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Abstract

Lattice N = 1 super-Yang-Mills theory formulated using Ginsparg-Wilson fermions provides a

rigorous non-perturbative definition of the continuum theory that requires no fine-tuning as the

lattice spacing is reduced to zero. Domain wall fermions are one explicit scheme for achieving

this and using them we have performed large-scale Monte Carlo simulations of the theory for

gauge group SU(2). We have measured the gaugino condensate, static potential, Creutz ratios

and residual mass for several values of the domain wall separation Ls, four-dimensional lattice

volume, and two values of the gauge coupling. With this data we are able to extrapolate the

gaugino condensate to the chiral limit, to express it in physical units, and to establish important

benchmarks for future studies of super-Yang-Mills on the lattice.
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I. INTRODUCTION

The lattice formulation of supersymmetric theories necessarily breaks most1 of the contin-

uum supersymmetry (SUSY), since the translation group, a subgroup of the super-Poincaré

group, is broken to a discrete subgroup. This is intimately related to the failure of the

Leibniz rule on the lattice [3]. Hence all relevant/marginal operators that are allowed by

lattice symmetries will be generated radiatively, so that generically the long distance effective

theory will have supersymmetry badly broken.

On the other hand, the only relevant/marginal operator allowed in a gauge invariant

lattice formulation of pure N = 1 super-Yang-Mills [4] (SYM) with hypercubic symmetry is

the gaugino mass term [5]. By using Ginsparg-Wilson fermions [6], lattice chiral symmetry [7]

protects against additive renormalizations of the gaugino mass in the continuum limit. Hence

the desired continuum theory is obtained without fine-tuning of counterterms, merely by

setting the bare fermion mass to zero.

A viable lattice formulation provides nonperturbative information regarding SYM, the

foundation for all nonabelian four-dimensional supersymmetric gauge theories. Given the

unique features of supersymmetric theories, it makes sense to study their strong dynamics

by as many means as possible. It is quite exciting that the lattice approach can be brought

to bear on N = 1 SYM in a rigorous and reliable way, since it would be enlightening to

study the nonperturbative aspects of this theory in detail using numerical techniques. For

instance, information on the spectrum and renormalization of nonholomorphic operators

would be welcome.

It is essential to quantify the size of lattice artifacts, since these lead to deviations from

the continuum physics. One of the purposes of the present study is to determine the regime

of lattice parameters where continuum SYM makes its appearance (to a good approxima-

tion), and to characterize the difficulty of performing Monte Carlo studies in that limit,

given the algorithms and computing resources that are currently available. The study that

we present is representative of what can be achieved with a dedicated world-class supercom-

1 In cases with extended supersymmetry it is sometimes possible to preserve a nilpotent subalgebra (see for

example the reviews [1, 2] and references therein). For minimal supersymmetry, such as is studied here,

all of the generators are broken.
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puting resource—of order2 1 Teraflop/s × year (30 Million IBM BlueGene/L core hours) on

Rensselaer’s Computational Center for Nanotechnology Innovation—and highly optimized

parallel code (a modified version of the Columbia Physics System). It will be seen that we

are able to obtain reliable extrapolations to the chiral limit (vanishing gaugino mass), but

that the study was quite demanding and could not have been performed with anything less

than the resources just described.

Whereas much is known about the vacuum structure of SYM by continuum methods

[8, 9, 10, 11, 12, 13], nothing is known about its long distance dynamics and spectrum.

Furthermore, lattice methods have the ability to reveal far more detail about the vacuum,

as one can subject it to a configuration by configuration analysis, as has been done for pure

Yang-Mills with considerable success. Finally, we are interested in the effects of a small,

nonzero gaugino mass in the nonperturbative regime. The explicit, but controllable, chiral

symmetry breaking of the fermion discretization we use here allows us to explore the impact

of a small gaugino “soft mass” on nonperturbative quantities such as the condensate, the

string tension and the shape of the static potential. This is in the spirit of a large number of

proposals made over the last several years [14, 15, 16, 17, 18, 19, 20]. Ultimately, the impact

of nonzero gaugino mass on the spectrum of bound states will emerge from high statistics

studies that are beyond the scope of the present work. It will then be possible to compare

the lattice data to the references just cited.

One implementation of Ginsparg-Wilson fermions is domain wall fermions (DWF) [21,

22] in the limit of infinite separation between the walls, Ls → ∞. Besides the absence

of nonperturbative fine-tuning of the gaugino mass, DWF have the advantage that the

fermion measure is real, positive and the square root of the determinant which enforces

the Majorana condition is analytic with a phase that is independent of the gauge fields

[23, 24]. These three features are all lacking in the Wilson fermion formulation that was

applied in the only concerted effort to date to study SYM on the lattice by the DESY-

Münster-Roma collaboration [25, 26, 27, 28, 29, 30] and to a lesser extent Donini et al. [31].

(Recently, this program has been revived [32].) Our research, which has already appeared

in preliminary form [33], is in some sense a continuation of the work of Fleming, Kogut and

2 This is the actual computing power brought to bear. The theoretical computing power utilized was ten

times this.
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Vranas (FKV) [34] who pioneered the use of DWF for studying N = 1 SYM. Similar work

has been initiated by Endres [35]. What sets the present study apart is that an extensive scan

of the domain wall separation Ls and measurement of the residual chiral symmetry breaking

mass mres was done at two values of the bare lattice gauge coupling (β = 4/g2 = 2.3 and

2.4) and spatial/temporal volumes (L3 = 83 and 163; T = 16, 32). This has allowed us to

obtain a reliable chiral extrapolation (mres → 0), and a preliminary view on what occurs as

we take the continuum, theormodynamic limit (β, L, T → ∞).

The lattice formulation that is used in this study has already been described by FKV [34];

it is reviewed in Appendix A. In brief, the lattice employs Shamir DWF [22] in the adjoint

representation of SU(2), and the one-plaquette Wilson gauge action. The Majorana con-

dition is imposed through a square root on the fermion determinant, which as mentioned

above is analytic and introduces no gauge field dependent sign ambiguity [23, 24].

All results reported in this article utilize a domain wall height m0=1.9, as in the FKV

simulations, though we will comment briefly on some tests we did at other values of m0.

Lattice configurations were generated with a dynamical fermion mass mf = 0, so that

the finite size of the fifth dimension, parameterized by Ls, was the sole infrared regulator,

through the corresponding additive mass correction mres (reviewed in Appendix B), which

is a measure of residual chiral symmetry breaking [36]. One does not expect an optimal

value of m0 to exist [37], but for stronger couplings, the range is rather narrow. Our mres

measurements below show that we are in the correct phase—the explicit chiral symmetry

breaking decreases as Ls is increased—for m0 = 1.9. Finally, using the lattice configurations

that we generated, we computed mres for DWF propagators with other values of m0. We

found that mres could be lowered slightly by increasing m0 toward the critical value 2, and

that decreasing m0 from 1.9 increased mres. The decrease in mres by increasing m0 was not

significant, so we did not pursue the issue further.

In Section II we give our results for the bare gaugino condensate for various couplings

β = 4/g2 and domain wall separations Ls. Then in Section III we summarize our findings

for “gluonic” observables (i.e., those related to the nonabelian gauge bosons), principally

the string tension and thereby the Sommer parameter r0/a. Next in Section IV we discuss

the chiral extrapolations of the gaugino condensate based on our simulation results. We

conclude in Section V. In addition to the two appendices mentioned above, Appendix C

describes technical aspects of the simulation that may be of interest.
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β 2.1 2.2 2.3 2.4 2.5

〈λ̄λ〉a3 0.007494(5) 0.007719(5) 0.007051(5) 0.00499(6) 0.003043(5)

TABLE I: A scan of the condensate versus β for the 163 × 32 lattice with domain wall separa-

tion Ls = 16.

FIG. 1: Condensate vs. β for 163 × 32 lattice with Ls = 16.

II. BARE GAUGINO CONDENSATE

We have validated our simulation code by comparing to FKV at several points. We

obtained results that agree with FKV, to within 1% statistical errors.

A summary of all results obtained here for the gaugino condensate 〈λ̄λ〉 is given in

Tables I, II and III. The residual chiral symmetry breaking is parameterized through mres

[36], which we briefly review in Appendix B. Measurements were conducted on large and

small lattice volumes; it can be seen that in lattice units the finite-size dependence is mild

or insignificant. Simulations on 163 × 32 volumes with Ls = 48 are in progress and will be

presented elsewhere.

For the Ls = 16 lattices, which are relatively inexpensive, a scan over β was performed,

with results given in Table I and shown in Fig. 1. The vanishing extrapolated value at

β ∼ 2.7 is apparently due to finite-size effects that cause the system to deconfine.

We have measured the condensate at other values of Ls using a sea-Ls/valence-Ls ap-

proach. The condensate was measured using DWF with Lval.

s on top of dynamical lattices
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V × T Ls mresa 〈λ̄λ〉a3 mresr0 〈λ̄λ〉r3
0

83 × 8 16 0.158(5) 0.00711(7) — —

83 × 32 16 0.181(3) 0.00703(4) — —

163 × 32 16 0.184(2) 0.007051(5) — —

83 × 8 24 — 0.00507(8) — —

83 × 32 24 0.1541(15) 0.005112(8) 0.77(15) 0.63(37)

163 × 32 24 0.1707(19) 0.00556(5) 0.77(10) 0.51(20)

83 × 32 32 0.1319(12) 0.004321(11) 0.64(11) 0.50(26)

163 × 32 32 0.143(2) 0.00445(2) 0.623(99) 0.369(18)

83 × 32 40(I) 0.1183(54) 0.00383(3) — —

83 × 16 48 0.1043(17) 0.003563(20) 0.454(52) 0.293(99)

83 × 32 48 0.1071(10) 0.003551(11) 0.528(51) 0.43(12)

83 × 32 64 0.08864(84) 0.003164(10) 0.373(59) 0.24(11)

TABLE II: The gaugino condensate 〈λ̄λ〉 for various lattice sizes and Ls values, all at β = 2.3.

For most points, the residual mass mres has also been determined. The Ls values with “(I)” after

them are obtained by the interpolation method described in the text, and summarized in Table

IV. Values in units of the Sommer parameter r0 are also shown, for those cases where the potential

was measured (in particular, for all points that are included in the chiral extrapolation fit). The

Ls = 16 data was not included in the linear chiral extrapolation fit, because these points had too

much curvature (with respect to Ls) associated with them.

produced using a nearby Lsea

s . Performing this for Lsea

s values on either side of Lval.

s yields

robust interpolated (I) results, as can be seen in Table IV. These are then used in our

fits of 〈λ̄λ〉 vs. mres, together with the strictly dynamical measurements of Tables II and

III. Interpolations (“I”) are taken halfway between the results. Half the difference plus the

statistical errors added in quadrature is used as an error estimate for the interpolation.

We also use the results of Section IIIB below to express mres and 〈λ̄λ〉 in terms of the

Sommer scale r0 [38]. Note that the β = 2.4 value of mresr0 at Ls = 48 indicates that the

effective gaugino mass is roughly 1/4 the Sommer scale, so that we are beginning to enter

the chiral regime where supersymmetry is well-approximated. On the other hand, it can be

7



V × T Ls mresa 〈λ̄λ〉a3 mresr0 〈λ̄λ〉r3
0

83 × 32 16 0.080(2) 0.004839(15) — —

163 × 32 16 0.0969(8) 0.00499(6) — —

163 × 32 24 0.0838(17) 0.00389(8) 0.456(49) 0.63(20)

163 × 32 28(I) 0.0721(33) 0.003452(45) — —

83 × 32 32 0.0486(12) 0.00269(2) 0.352(20) 1.02(16)

163 × 32 32 0.0653(15) 0.003330(12) 0.375(47) 0.63(23)

83 × 32 40(I) 0.0390(24) 0.00234(8) — —

83 × 32 48 0.0328(9) 0.002165(18) 0.271(23) 1.22(29)

TABLE III: Results similar to Table II, except that these are for β = 2.4.

β V T Lval.
s Lsea.

s mresa 〈λ̄λ〉a3

2.3 83 32 40 32 0.117(4) 0.003818(9)

2.3 83 32 40 48 0.1196(10) 0.003843(9)

2.3 83 32 40 I 0.1183(54) 0.00383(3)

2.4 163 32 28 24 0.0707(13) 0.003407(3)

2.4 163 32 28 32 0.0734(15) 0.003496(3)

2.4 163 32 28 I 0.0721(33) 0.003452(45)

2.4 83 32 40 32 0.0381(10) 0.002284(13)

2.4 83 32 40 48 0.0398(11) 0.002397(17)

2.4 83 32 40 I 0.0390(24) 0.00234(8)

TABLE IV: The valence/sea results using dynamical lattices. Here Lval.
s is the value used for the

measurements and Lsea
s is the value used in the dynamical fermion simulations.

seen that mresr0 is quite large for all of the β = 2.3 data, and likewise the condensate in

physical units is small compared to the β = 2.4 results. Clearly β = 2.3 is further away

from the supersymmetry limit due to the coarser lattice. On the other hand it can be seen

that the β = 2.4 data shows a marked volume dependence due to the smaller physical “box”

that the states must squeeze into.

We note that in the present context the mres measurement coming from the midpoint
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“pion” propagator calculation is a quenched probe of explicit chiral symmetry breaking, since

in the dynamical theory (i.e., the one pertaining to the lattice action that is used to generate

configurations) we do not have two “valence quarks” and a nonanomalous continuous chiral

symmetry that would give rise to pseudo-Nambu-Goldstone bosons. Rather, the (adjoint)

pions that are measured in the midpoint calculation of mres are pseudo-Nambu-Goldstone

bosons of an SU(4|3) graded chiral symmetry that is spontaneously broken in the chiral

limit, and explicitly broken at finite Ls, as we now explain.

The SU(4) subalgebra of the graded Lie algebra SU(4|3) is associated with the gaugino

(a Majorana fermion) plus three quenched Majorana fermion probes. The total of four

Majorana fermions with degenerate mass is equivalent to two Dirac fermions in the adjoint

representation, with a resulting SU(4) chiral flavor symmetry in the chiral limit. The fact

that three of the four Majorana degrees of freedom are quenched is equivalent to introducing

three Majorana ghosts, also with the same mass. As in partially quenched QCD, the ghosts

cancel the contribution of the nondynamical fermions to the functional integration measure.

Also analogous to quenched QCD, there is a graded Lie algebra that relates the fermion

and ghost fields, namely SU(4|3) in the present case. The PCAC mass (mres) associated

with this Nf = 2 adjoint-Dirac fermion chiral symmetry breaking is a good probe of the

DWF chiral limit, for the same reasons that it is a solid tool in quenched DWF-QCD studies.

Investigations of the effective theory description of the SU(4|3) algebra, from the theoretical

perspective as it relates to DWF, are in progress [39]. Finally we note that in recent spectrum

studies of one-flavor QCD, a similar non-singlet flavor current was utilized with success [40].

III. GLUONIC OBSERVABLES

One of the interesting features of SYM is that it is a theory with dynamical fermions

that do not screen static sources in the fundamental representation. In contrast to QCD,

it has true confinement in the sense of an area law and no string breaking. (Recall that

the gauge action is expressed in terms of fundamental links, so we are not studying the

SU(2)/Z2 = SO(3) gauge theory, wherein fundamental sources would have an ambiguous

meaning.) On the lattice, we can therefore study a very interesting static potential—one

with chiral fermions and a nonvanishing string tension. These features of SYM will be

presented here, illustrating the special ability of the lattice approach: to conduct detailed

9



β χ(1, 1) χ(2, 2) χ(3, 3) χ(4, 4) χ(5, 5) χ(6, 6)

2.1 0.6423(6) 0.5242(16) 0.459(7) 0.4(2) — —

2.2 0.580(2) 0.427(5) 0.330(10) 0.12(5) — —

2.3 0.51051(11) 0.3091(4) 0.1997(12) 0.163(11) 0.17(7) —

2.4 0.45966(7) 0.2346(3) 0.1227(9) 0.078(3) 0.052(14) 0.19(7)

2.5 0.42493(8) 0.1969(3) 0.0896(5) 0.0507(17) 0.036(7) —

TABLE V: Creutz ratios for the 163 × 32 × 16 lattice.

studies of the nonperturbative aspects of the theory that the continuum methods cannot

touch upon.

A. Creutz ratios

Here we look at Creutz ratios [41] as a probe of the string tension in lattice units, σa2, as

well as to delineate the scaling regime where the continuum limit may be extracted. Results

for the 163 × 32 × 16 lattice are shown in Table V and Fig. 2. Although the errors are

somewhat large, scaling is clearly setting in at around β ∼ 2.4 as can be seen by the χ(4, 4)

ratios, which lie quite close to the 2-loop curve. Much beyond that β, finite size effects

will take over and it is necessary to move to a larger lattice. For this reason, most of our

simulations have been performed at β = 2.3 and β = 2.4.

B. Static potential

The static potential was obtained by measuring Wilson loops with one side of length t in

the temporal direction, according to standard methods. Having obtained V (r)a from fitting

the exponential decay in time, we next analyze the potential in terms of the distance ra.

We fit the data to the standard form

V (r)a = V0a + σa2(r/a) −
α

r/a
, (3.1)
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FIG. 2: Creutz ratios for the 163 × 32× 16 lattice. The dashed line indicates the 2-loop prediction

for the dependence a2(β), apart from an overall normalization that is determined by requiring that

the curve pass through the data.

as was also done by the DESY-Münster-Roma collaboration in [25], and in the recent

work [35]. We obtain the Sommer parameter r0/a from this fit, using the formula

r0
a

=

√

α + 1.65

σa2
. (3.2)

An analysis using the force method (including smeared links and tree level improvement) of

Sommer [38] will be performed in a future study.

The results are presented in Table VI. Note that the values of the string tension in

physical units, σr2

0
, are quite uniform for fixed β, and have small errors. These results are

to be compared with Table 1 of [35]. There, a nonzero fermion mass mf = 0.02 was used,

Ls = 16 and somewhat different fit ranges for r, t were employed. Our results for β = 2.3 do

not agree, but the β = 2.4 results are in fairly good agreement, comparing to the numbers

we obtain at 163 × 32, Ls = 24, and taking into account that lattice parameters are close

but not identical.

Above, we have used the results of Table VI to scale the residual mass and condensate

to r0 units. (Note that the r0/a values with identical lattice parameters were used in this

procedure, rather than a uniform r0/a value across all mres and 〈λ̄λ〉.) With the string

11



β V × T Ls V0a σa2 α r0/a σr2
0

method

2.3 83 × 32 24 0.718(89) 0.082(30) 0.371(60) 4.98(98) 2.021(60) L = 8

2.3 163 × 32 24 0.752(70) 0.102(24) 0.411(46) 4.50(59) 2.061(46) L = 16

2.3 163 × 32 24 0.696(67) 0.119(22) 0.372(46) 4.12(42) 2.022(46) L = 8

2.3 83 × 32 32 0.748(82) 0.087(27) 0.400(55) 4.87(83) 2.050(55) L = 8

2.3 163 × 32 32 0.745(90) 0.109(31) 0.412(59) 4.36(69) 2.062(59) L = 16

2.3 163 × 32 32 0.635(50) 0.146(17) 0.338(33) 3.69(25) 1.988(33) L = 8

2.3 83 × 16 48 0.706(68) 0.107(22) 0.372(47) 4.35(49) 2.022(47) L = 8

2.3 83 × 32 48 0.768(47) 0.085(15) 0.414(33) 4.93(47) 2.064(33) L = 8

2.3 83 × 32 64 0.680(94) 0.113(32) 0.353(63) 4.21(66) 2.003(63) L = 8

2.4 163 × 32 24 0.579(40) 0.065(13) 0.272(27) 5.44(57) 1.922(27) L = 16

2.4 83 × 32 32 0.609(12) 0.0369(36) 0.2809(90) 7.24(37) 1.9309(90) L = 8

2.4 163 × 32 32 0.611(43) 0.059(13) 0.295(29) 5.74(70) 1.945(29) L = 16

2.4 83 × 32 48 0.648(15) 0.0288(44) 0.309(11) 8.25(65) 1.959(11) L = 8

TABLE VI: Gluonic observables obtained from the static potential. We note that there is no sign

of volume dependence in the string tension results expressed in physical units σr2
0
. On the other

hand, r0/a shows significant volume dependence in the beta = 2.4, Ls = 32 case. Errors estimates

are obtained from a jackknife analysis of fits. For the L = 16 results, the fits were also done using

the same set of Wilson loops as in the L = 8 case, denoted “L = 8 method”, so that dependence

on the fit method (choice of Wilson loops) could be controlled for, and therefore ruled out as a

spurious source of finite size dependence. It can be seen that the uncertainties are quite high for

the Ls = 48 results, presumably indicative of increased “noisiness” of gauge configurations in the

presence of light fermions.

tension in hand, we now see that the energy scale of confinement
√

σr2

0
≈ 1.4 lies above the

explicit chiral symmetry breaking scale mresr0 by a factor of 1.8 to 3.8 for β = 2.3, and 3.0

to 5.2 for β = 2.4. This is consistent with the observation that the string tension results in

Table VI are insensitive to the range of Ls values displayed there, when expressed in physical

units (σr2

0
). That is, confinement dynamics are to a good approximation decoupled from the

explicit chiral symmetry breaking. Since the lowest lying excitations of SYM are glueballs

12



β Ls > 24 Ls > 16

2.3 0.00083(19) 0.00068(18)

2.4 — 0.000998(56)

TABLE VII: Fit results for the chiral extrapolation of the gaugino condensate, depending upon

the range of Ls values used.

and superpartners, the gap associated with confinement should also decouple these states

from the explicit chiral symmetry breaking. Thus it appears that we are well into the regime

where the spectrum reflects supersymmetry, and it will be quite interesting to examine the

spectrum in order to check whether or not this is true—something we will do in future work.

In addition, it gives us confidence that we are performing the chiral extrapolation of the

condensate (next section) correctly, where the data points are dominated by the physics of

the supersymmetric theory.

IV. EXTRAPOLATION OF THE GAUGINO CONDENSATE

One important question is the size of Ls necessary to get into the linear regime where

〈λ̄λ〉 ≈ c0 + c1mres (4.1)

is a good approximation. Obviously, this serves as an indicator of where we need to be in

order to have SYM well-approximated. Thus, the measurement of 〈λ̄λ〉 vs. mres is an impor-

tant benchmark for determining the regime in which other SYM phenomena can be studied

with the DWF lattice approach. Another question is the extent to which c0,1 are sensitive

to finite spacetime volume (V4 = V ×T in our notation). In fact, we find, interestingly, that

most of the volume dependence is absorbed into mres. All of this is clearly seen from Figs. 3

and 4. One sees that to a very good approximation, the 83 × 32 and 163 × 32 lattice data

lie on the same line. The smaller value of mres on the smaller lattice is most likely due to a

smaller density of near-zero modes. The chiral extrapolation (mres → 0) of 〈λ̄λ〉a3 obtained

from the fit is given in Table VII. A feel for the sensitivity to the fitted range of Ls can be

seen from the two results we provide for β = 2.3, which differ by the minimum Ls that was

included. We note that the difference is within the fit error.
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FIG. 3: Condensate vs. mres for β = 2.3, in bare lattice units. Dashed lines show the two linear fits

(differing by the minimum Ls included). Extrapolated values together with fit errors are shown at

mres = 0.

FIG. 4: Condensate vs. mres for β = 2.4, in bare lattice units. The dashed line shows the linear

fit. The extrapolated value together with fit error is shown at mres = 0.
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According to Table VI, the value of the lattice spacing a is smaller on the β = 2.4 lattice.

Thus it is surprising that the extrapolated value of 〈λ̄λ〉a3 is larger for β = 2.4 than for

β = 2.3. On the other hand, we note from Table III that the β = 2.4 condensates measured

in physical units (〈λ̄λ〉r3

0
) are significantly larger than the β = 2.3 ones, given in Table

II. A plausible interpretion is that there are larger renormalizations of the condensate on

a finer lattice (β = 2.4), a hypothesis that we are preparing to test with nonperturbative

renormalization [42, 43] in an upcoming study. Under this interpretation we have an under-

standing of why in Table VII the chirally extrapolated value of the lattice units condensate

for β = 2.4 is larger than the one for β = 2.3, which does not agree with naive expectations.

It can also be seen from the β = 2.4, Ls = 32 data in Table III that a very significant finite

size effect occurs for the condensate expressed in physical units, a reflection of the finite size

dependence of the static potential fit results for this choice of parameters (cf. Table VI).

Furthermore, notice that the β = 2.3, Ls > 24 fit is of better quality than the Ls > 16 fit as

can be seen from Fig. 3. It is interesting that the extrapolated value of the β = 2.3, Ls > 24

fit is within 1σ of the extrapolated value of the β = 2.4 fit.

V. CONCLUSIONS

We have performed a detailed Monte Carlo simulation study of the supersymmetric limit

of N = 1, SU(2) super-Yang-Mills using a DWF lattice formulation. Our work follows from

an earlier calculation by FKV but significantly extends that work; we use larger lattices with

two lattice spacings and are able to probe much closer to the chiral limit. Our results for

the gaugino condensate show the correct theoretical dependence on the residual mass and

allow for a reliable extrapolation to the chiral limit. Our results provide strong evidence

for a nonzero gaugino condensate in the supersymmetric continuum limit, and establish

important benchmarks for future studies.

Future work that is envisioned is aimed at developing a deeper understanding of the

configurations that are responsible for generating the nonzero gaugino condensate. In par-

ticular, we would like to elucidate the continuum picture on the cylinder R3 × S1, where it

is monopoles and “KK monopoles” that combine to yield the infinite volume value [12].

At the same time, two important studies need to be done in order to further develop

the lattice results presented here. First, we will make a more accurate determination of the
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Sommer scale r0, using the force technique. In that study, smearing of the gauge links and

other refinements appearing in [38] will be used. Second, nonperturbative renormalization

of the gaugino condensate will be performed [42, 43].

Finally, we note that rather large Ls values were required in order to get mresr0 ∼ 1/4. To

improve the situation we envision switching to simulations with modified versions of DWF

that have superior chiral behavior [44, 45].
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APPENDIX A: LATTICE FORMULATION

In this appendix, the N = 1, SU(2) SYM lattice action and operators associated with

the gaugino condensate are described. The DWF formulation for this theory is identical to

[23, 24, 34], and is described here for completeness. The lattice consists of an SU(2) gauge

theory with a single Majorana fermion in the adjoint representation. As such, the fermionic

part of the path integral is the analytic square root of the Dirac determinant, yielding the

Pfaffian of the corresponding matrix.
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The partition function is

Z =

∫

[dU ]

∫

[dΨ]

∫

[dΦ]e−S. (A1)

Here Uµ(x), µ = 1, 2, 3, 4 is the four-dimensional gauge link field in the fundamental repre-

sentation, Ψ(x, s) is a (real) five-dimensional Majorana spinor in the adjoint representation

and Φ(x, s) is a (real) five-dimensional bosonic Pauli Villars (PV) field with the same indices

as the Majorana fermion. The coordinate x denotes sites in the four-dimensional spacetime

box, which has L sites in spatial directions and T sites in time. The boundary conditions

along these directions are taken to be periodic for the gauge link fields but antiperiodic

in time for the fermion and Pauli-Villars fields. The coordinate of the fifth direction is

s = 0, 1, . . . , Ls−1, where Ls is the size of that direction and is taken to be an even number.

The action S is given by:

S = SG(U) + SF (Ψ, U) + SPV (Φ, U) . (A2)

SG(U) is the pure gauge part and is defined using the standard single plaquette action of

Wilson:

SG = β
∑

p

(1 −
1

2
ReTr[Up]) (A3)

where β = 4/g2 and g is the gauge coupling.

The fermion part SF (Ψ, U) is given by:

SF = −
∑

x,x′,s,s′

Ψ̄(x, s)DF (x, s; x′, s′)Ψ(x′, s′) (A4)

where DF is the DWF Dirac operator in the form of [46]:

DF (x, s; x′, s′) = δ(s− s′) 6D(x, x′) + 6D⊥(s, s′)δ(x− x′) (A5)

6D(x, x′) =
1

2

4
∑

µ=1

[

(1 + γµ)Vµ(x)δ(x+ µ̂− x′) + (1 − γµ)V
†
µ (x′)δ(x′ + µ̂− x)

]

+ (m0 − 4)δ(x− x′) (A6)

6D⊥(s, s′) =



















PRδ(1 − s′) −mfPLδ(Ls − 1 − s′) − δ(0 − s′) s = 0

PRδ(s+ 1 − s′) + PLδ(s− 1 − s′) − δ(s− s′) 0 < s < Ls − 1

−mfPRδ(0 − s′) + PLδ(Ls − 2 − s′) − δ(Ls − 1 − s′) s = Ls − 1

(A7)
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PR,L =
1 ± γ5

2
(A8)

where V is the gauge field in the adjoint representation. It is related to the field in the

fundamental representation:

[Vµ(x)]a,b =
1

2
Tr[U †

µ(x)σaUµ(x)σb]. (A9)

with σa the Pauli matrices. In the above equationsm0 is a five-dimensional mass representing

the “height” of the domain wall and it controls the number of light flavors in the theory. In

order to get one light species in the free theory one must set 0 < m0 < 2 [21]. The parameter

mf explicitly mixes the two chiralities and as a result it controls the bare fermion mass of

the four-dimensional effective theory. In our simulations we have set mf = 0.

The fermion field Ψ̄ is not independent but is related to Ψ by the equivalent of the

Majorana condition for this 5-dimensional theory [24]:

Ψ̄ = ΨTCR5 (A10)

where R5 is a reflection operator along the fifth direction and C the charge conjugation

operator in Eucledean space which can be set to:

C = γ0γ2 . (A11)

Therefore, the fermion action can also be written as:

SF = −
∑

x,x′,s,s′

ΨT (x, s)MF (x, s; x′, s′)Ψ(x′, s′) (A12)

where

MF (x, s; x′, s′) = CR5DF (x, s; x′, s′) (A13)

is an antisymmetric matrix as can be easily checked [23]. As a result the fermionic integral

gives the anticipated Pfaffian:

∫

[dΨ]e−SF = Pf(MF ) . (A14)

Because det(CR5) = 1 one also has that det(MF ) = det(DF ) and therefore:

Pf(MF ) =
√

det(DF ) . (A15)
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The Pauli-Villars (PV) action SPV is designed to cancel the contribution of the heavy

fermions [47]. Viewing the extra dimension as an internal flavor space [47] one can see that

there are Ls − 1 heavy fermions with masses near the cutoff and one light fermion. The

PV subtraction removes effects of the Ls heavy particles in such a way that the overlap

determinant is obtained in the Ls → ∞ limit [23]. The PV subtraction used here is as in

[48] and is given by:

SPV =
∑

x,x′,s,s′

ΦT (x, s)MF [mf = 1](x, s; x′, s′)Φ(x′, s′) . (A16)

The integral over the PV fields results in:

∫

[dΦ]e−SPV =
1

Pf(MF [mf = 1])
. (A17)

The gaugino condensate is measured using four-dimensional fermion fields that are a

projection of the five-dimensional DWF [46]:

χ(x) = PRΨ(x, 0) + PLΨ(x, Ls − 1)

χ̄(x) = Ψ̄(x, Ls − 1)PR + Ψ̄(x, 0)PL . (A18)

In the Ls → ∞ limit of the theory these operators directly correspond to insertions in the

overlap of appropriate creation and annihilation operators [47].

Using Eq. (A10) and (A18) the Majorana condition on the four-dimensional fermion field

is:

χ̄ = χTC . (A19)

Because this is the correct condition for a four-dimensional field one can see that the def-

inition in Eq. (A10) not only produces an antisymmetric fermion matrix MF but is also

consistent with the projection prescription in Eq. (A18) as expected.

APPENDIX B: RESIDUAL MASS

Residual chiral symmetry breaking is understood through the axial Ward identity on the

DWF lattice [36], which we write here for the case of vanishing bare mass:

∇µ〈A
a
µ(x)P b(0)〉 = 2〈Ja

5q(x)P
b(0)〉 (B1)
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where Aa
µ is a DWF version of the axial current with isospin index a = 1, 2, 3 and P a is

a DWF version of the corresponding pseudoscalar current, the interpolating operator for

the “pion.” We note that in the present case the pion is in the adjoint representation of

the SU(2) gauge group (not to be confused with isospin). The pseudoscalar current Ja
5q is

different in that it represents a pion at the middle of the fifth dimension:

Ja
5q(x) = −ψ̄(x, Ls/2 − 1)PLσ

aψ(x, Ls/2) + ψ̄(x, Ls/2)PRσ
aψ(x, Ls/2 − 1). (B2)

It accounts for the difference in how the left- and right-handed “quark” fields in the DWF

description transform, which causes a mismatch midway between the domain walls and hence

the explicit nonconservation of the axial current in the lattice theory at finite Ls.

Since in the continuum limit the Ward identity must transition to the continuum form,

we see that J5q must be related to the pseudoscalar current P through the residual mass

that is a consequence of Ls 6= ∞:

Ja
5q ≈ mresP

a. (B3)

Thus to extract the residual chiral symmetry breaking one studies the large (imaginary)

time behavior of the ratio:

mres = lim
t→∞

∑

~x,~y J
a
5q(t, ~x)P

a(0, ~y)
∑

~x,~y P
a(t, ~x)P a(0, ~y)

. (B4)

In all of our work we find that this quantity reaches a plateau in the range 3 < t < T − 2,

and fit to a constant in that region of t.

APPENDIX C: SIMULATION

Here we make a few brief remarks on the computational aspects of this project. Config-

urations were generated with the rational hybrid Monte Carlo algorithm [49, 50, 51]. All

simulations were performed on Rensselaer’s Computational Center for Nanotechnology Inno-

vations cluster of 16 IBM BlueGene/L machines. We typically used the full capacity of two

such machines 24 hours/day, and generated configurations for approximately ten months,

for a total of approximately 30 Million IBM BlueGene/L core hours. The time required

for data analysis was a small fraction of this, by comparison. Naturally, the large lattices

(163 × 32) with small mres values were the most costly to generate.
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β V × T Ls Nτ configs./day

2.3 83 × 32 48 60 140

2.3 83 × 32 64 80 70

2.3 163 × 32 32 90 40

2.4 83 × 32 48 100 80

2.4 163 × 32 48 200 11

TABLE VIII: Example timing results on a single BlueGene/L rack (1024 dual core nodes). Here,

Nτ is the number of steps in the leapfrog trajectory.

In the rational approximation used to generate configurations, we found that it was

necessary to go to rather high degrees, due to a very wide spread between lowest and highest

eigenvalues of the Dirac operator. This occured because we performed our simulations at

vanishing bare fermion mass mf = 0, relying on the finite but large value of Ls as an

infrared regulator. Typically, the Metropolis step required degrees between 15 and 20 in

the computation of the change in the Hamiltonian, in order to have sufficient accuracy.

Moreover, it was not unusual to require between 50 and 100 steps in the leapfrog integration

for a trajectory of τ = 0.5 simulation time units, in order to get reasonable acceptance

rates at large Ls. Again, this was a result of small eigenvalues of the Dirac operator.

Naturally, these features led to very slow updating. For the Ls values that we simulated, a

single BlueGene/L rack was able to produce O(10) to O(100) configurations per day. Some

examples are given in Table VIII. The last row represents a run that was not reported in

the main text as it was too slow for a reasonable data set to be generated in a practical

time-frame. As a result, our forthcoming work will set mf 6= 0 and perform an mf → 0

extrapolation for these larger volume, large Ls simulations.
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